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Toward data representation with spiking neurons

i.e., on individual neurons or on how distinct classes of 
neurons are connected with each other. However, the func-
tional aspects of these networks of neurons cannot be fully 
understood by its structure alone. How are the intercon-
nected neurons marshaled to give rise to behavior? Why are 
the neurons as they are? Why are they connected the way 
they are?

These kinds of question were mostly addressed from the 
second half of the 20th century onwards. The brain was 
considered to be an information processing system. The 
principles and tools of signal processing and information 
theory were used to understand the function of some parts 
of the brain (e.g., the redundancy reduction hypothesis1). As 
information theory requires knowledge about the statistical 
structure of the information source, this approach triggered 
research into the properties of the sensory environment, 
especially with respect to vision,2–4 and its links to neural 
processing.5,6 For vision, in addition to the principles of 
information theory, other principles were used to explain 
its function in the form of “The early visual system might 
be optimized for  .  .  .  ,” including energy expenditure7 and 
minimal wiring among neurons.8

However, the data representation tools used which were 
from signal processing and information theory, were 
methods that were not developed with sensory neurosci-
ence in mind. When these methods are used in a neurosci-
entifi c framework, the following assumptions were implicitly 
made:

— information is conveyed using a fi ring-rate code;
—  neural processing is described by a linear fi lter.

Here, we might summarize them as linear rate-coding 
assumptions. The assumption are of course well justifi ed as 
a fi rst approximation to reality, especially when learning 
from natural stimuli is involved. However, we feel it is time 
to reconsider them. The neural system is nonlinear, and 
single spikes were found to be possible information carriers, 
at least in the early visual system of the fl y.9

In this article, we propose data representation with a 
spiking neuron model. We formulate the problem in Sect. 2 
as an optimization problem, and in Sect. 3.1, give a detailed 

Abstract Notable advances in the understanding of neural 
processing were made when sensory systems were investi-
gated from the viewpoint of adaptation to the statistical 
structure of their input space. For this purpose, mathemati-
cal methods for data representation were used. Here, we 
point out that emphasis on the input structure has been at 
the cost of the biological plausibility of the corresponding 
neuron models which process the natural stimuli. The signal 
transformation of the data representation methods does not 
correspond well to the signal transformations happening 
at the single-cell level in neural systems. Hence, we now 
propose data representation by means of spiking neuron 
models. We formulate the data representation problem as 
an optimization problem and derive the fundamental quan-
tities for an iterative learning scheme.
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1 Introduction

Science is about exploring the structure and function of 
incompletely understood systems or phenomena. For the 
system “brain” or the phenomena “learning” and “vision”, 
great advances have been made since the debates in the 
early 20th century about whether individual neurons are 
the basic elements of the nervous system or not (neuron 
doctrine). Since then, much emphasis has been on structure, 
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derivation of the key quantities for an iterative optimization 
rule. In Sect. 3.2 we give an interpretation, and a summary 
in Sect. 4 concludes the article. Here, we put emphasis on 
the mathematical derivation. A more detailed analysis 
of the resulting online rule and its properties, along 
with application examples, will be given elsewhere (in 
preparation).

2 Problem formulation

First, we specify the neuron model we are working with. 
Then, we put the aim “data representation with spiking 
neurons” into mathematical form. This is done by means of 
a cost functional, which needs to be minimized to accom-
plish data representation.

2.1 Neuron model

The assumed neural model is closely related to the SMR0 
model,10 so that the equation for the membrane voltage u 
is
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where In(t) is a noise current, t̂  is the last spike timing before 
time t, and w is an unknown encoding fi lter of length Tw, to 
be learned for the minimization of the aforementioned cost 
functional. The convolution of input x with encoding fi lter 
w produces the input current I. Spike timings {t f, f = 1,  .  .  .} 
are defi ned by u(t f ) = θ, where θ > 0 is a fi xed threshold. The 
remaining constants are the recovery time constant τ of the 
recovery current Ir and the reset amount η0 < 0.

2.2 Reconstruction

From the obtained spike timings {t f }, we aim at linearly 
reconstructing the stimulus x via

ˆ
:
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where h is the decoding fi lter, also to be learned for the 
minimization of the cost functional, and Td, the estimation 
time delay. For the spikes generated prior to t, only those 
within a time-window of length Tp before t are considered 
for the reconstruction.

From Eq. 2 we see that the arguments for h are in the 
range [−Td Tp]. For a good decoder, h(−Td) = h(Tp) = 0 
should hold. The role of h(s) is different for s > 0 and s < 0. 
For s > 0, the input at t is predicted from a spike event at tf 
< t. On the other hand, for s < 0, the input is reconstructed 
from a later spike event at t f  > t.

2.3 Cost functional

Both the encoding fi lter w and the decoding fi lter h are 
unknown. They are determined in order to minimize the 
cost functional
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T is a fi xed time horizon, and α weights the energy cost. This 
optimization problem implements the aim of data represen-
tation with spiking neurons in mathematical form. It is a 
quadratic in h, and hence a standard problem, but on the 
other hand it is not trivial in w.

3 The functional derivative dJ/dw

Gradient-based methods are often used for optimization. 
Here, we obtain the expression for the functional derivative 
δJ/δw for the optimization with respect to w when the 
decoder h is held fi xed.

3.1 Derivation

We start by perturbating w(s) to w(s) + δw(s), where

δ εϕw s s( ) = ( )  (4)

for a small constant ε > 0 and a suffi ciently smooth, 
but otherwise arbitrary, function ϕ(s). The perturbation 
δw causes a perturbation δt f  in the spike timings, which 
in turn causes a perturbation δx̂(t) of the reconstruction 
x̂. The resulting perturbation δJ of the cost functional 
J is
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The perturbation δx̂(t). We use the chain rule to obtain

δ δˆ
ˆ
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For a fi xed spike index f, Eq. 2 leads to
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In order to evaluate Eq. 6 and thus Eq. 5, we must know the 
perturbation δt f .

The perturbation δt f . The spike timing t f  > Tw is defi ned 
by u(t f ) = θ, i.e.,
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After perturbation of w(s), we make the following ansatz 
for δtf:

δ ε εt a of
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 (9)



 225

where af needs to be determined. The implicit equation for 
af is given by
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The constant ε > 0 can be made arbitrarily small, so that via 
the Taylor series and Eq. 8 we obtain
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From Eq. 11, we see that af must satisfy
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Finally, we see from Eq. 12 that af has the form
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so that we obtain the update rule for yf
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and δt f is given by
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Calculation of the functional derivative δJ/δw. Equation 17 
along with Eq. 7 allows us to evaluate Eq. 6, and hence to 
obtain δJ via Eq. 5.

Equation 6 for δx̂(t) introduces a sum over the spike-
timings t f into the integral
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of Eq. 5. Since there are only a fi nite number of spikes 
during the time-interval [0 T], the sum can only have a fi nite 
number of terms. Therefore we interchange the summation 
and the integration to obtain, with Eq. 7,

M x t x t h t t t
f

t T

t T f

e t

f
d

f
p

f

= − ( ) − ( )( ) −( ) ⋅∑∫ −

+

( )

ˆ �
� ������ ������

d
0

TT

f

w

y s s s o∫ ( ) ( ) + ( )ε ϕ εd 2

 
(19)

The quadratic terms in Eq. 5 yield terms of the order of ε2, 
so that with the previous equation for M we obtain
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Taking the principal linear part,11 we obtain the fi nal expres-
sion for the functional derivative of J with respect to w
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3.2 Interpretation

For the interpretation of Eq. 21, we fi rst transform ē(tf) 
by a change of variables and partial integration, using 
h(−Td) = h(Tp) = 0, into

e t e t s h s sf
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The rate of the error e = x̂ − x is averaged with a weighting 
given by the reconstruction fi lter h. Equation 2 shows that 
the spike-timing t f  contributes via h(s) to the reconstruction 
at t f  + s. Hence, the weighting is such that ē(t f ) indicates the 
reconstruction error caused by spike-timing t f  on the time-
interval [t f  − Td t f  + Tp].

Via yf(s) and Eq. 16, there is a recursion inherent in 
Eq. 21. We solve this recursion to allow for a better inter-
pretation of the functional derivative δJ/δw(s). Grouping 
the terms with the common factor x(t f  − s) together, we 
obtain
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The expression ẽ(tf) can be interpreted as the total recon-
struction error caused by the spike-timing t f . Equation 23 
then shows that the functional derivative δJ/δw(s) is 
the difference between αw and the correlation between the 
total reconstruction error caused by spike-timing t f  and the 
normalized input x(t f  − s)/u.(t f ) at time s before the spike.

4 Summary

In the ongoing search to understand early sensory systems, 
notable advances have been made through data representa-
tion methods applied to natural stimuli. We pointed out, 
however, that the corresponding neuron models which 
process the natural stimuli tend to be abstract, and might 
be a limiting factor for further advances. This is especially 
so when the aim is to connect to experimental results at the 
single-cell level. Here, we made a small step toward biologi-
cally more plausible models, and considered data represen-
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tation by means of a spiking neuron. Requiring linear 
reconstructability of the input from the spike train, we 
derived in detail the essential quantities for an iterative 
learning rule, and discussed their meaning.
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