
Learning a selectivity–invariance–selectivity feature extraction architecture

for images

Michael U. Gutmann and Aapo Hyvärinen

Dept Computer Science, Dept Mathematics and Statistics, HIIT, University of Helsinki

michael.gutmann@helsinki.fi

Abstract

Selectivity and invariance are thought to be impor-

tant ingredients in biological or artificial visual sys-

tems. A fundamental problem is, however, to know what

the visual system should be selective to and what to be

invariant to. Building a statistical model of images, we

learn here a three-layer feature extraction system where

the selectivity and invariance emerges from the proper-

ties of the images.

1. Introduction

Selectivity and invariance are two fundamental re-

quirements for any feature extraction system. The sys-

tem should detect specific patterns while being invari-

ant, or tolerant, to possible variations.

Our visual system, for instance, is highly selective in

recognizing faces. At the same time, however, it is tol-

erant to all kinds of variations. We recognize a familiar

face when seen under different illuminations, when seen

from the front or the side, or when it is partially covered

with clothing. Selectivity and tolerance are thought to

be relevant ingredients in biological and computer vi-

sion, see for example [4, 8, 1] and the references within.

One interesting line of research considers hierarchical

models that consist of canonical elements which per-

form elementary selectivity and tolerance (invariance)

computations, see for example [7, 5]. A fundamental

problem is, however, to know what the canonical ele-

ments should be selective and invariant to.

In this paper, we address this issue by learning from

natural images what kind of features to be selective

to and what kind of deviations to tolerate. We build

a probabilistic model which consists of three feature-

extraction layers. After learning, the first layer empha-

sizes selectivity, the second invariance, and the third

one again selectivity. Moreover, learning increases the

sparsity of the feature outputs. The learning itself is

performed with an estimation method which guarantees

consistent (converging) estimates [2].

We introduce the image data next before turning to

the model in Section 3. Section 4 concludes the paper.

2. Image data and preprocessing

The modeling of natural images is often done with

image patches. In this paper, we use instead the tiny

images dataset [9], converted to gray scale. The data

set consists of about eighty million images that show

complete visual scenes downsampled to 32× 32 pixels.
Examples are shown in Figure 1.

Since we are interested in modeling spatial features,

we removed the DC component from the images and

normalized them to unit norm before the learning of

the features. We compute the norm of the images after

PCA-based whitening. Unlike the norm before whiten-

ing, this norm is not dominated by the low-frequency

content of an image [3, Chapter 5]. Note that this nor-

malization can be considered to provide a simple means

to make the features invariant to different illumination

conditions. After normalization, we reduced the dimen-

sionality from 32·32 = 1024 to 200, which corresponds
to low-pass filtering of the images. After dimension re-

duction, the images are elements in a 200 dimensional

sphere.

Figure 1: Examples from the tiny images dataset.



3. Learning features in a three-layer model

We divide the learning of the three feature extraction

layers into two phases: first, we estimate an intermedi-

ate model with two layers. Then, we learn the complete

three-layer model.

3.1. Intermediate model

The intermediate model is the same as the two layer

model in [2, Section 5.3] where we estimated it for natu-

ral image patches extracted from larger images. Unlike

the image data which we use in this paper, the patches

did not show complete visual scenes. We can thus ex-

pect some differences in the results.

In this intermediate model, the value of the log-pdf

at an input image x is given by the overall activity of

the second layer feature outputs y
(2)
k ,

ln p(x) =

n2
∑

k=1

y
(2)
k (x) + c, (1)

where c is a scalar offset and n2 = 50. The feature

outputs are computed as follows. First, the input x is

passed through a linear feature detection stage which

gives the first-layer outputs y
(1)
i ,

y
(1)
i = w

(1)
i

T
x, i = 1 . . . n1, (2)

with n1 = 100. The first-layer outputs are then rec-

tified, passed through a second linear feature detection

stage, and nonlinearly transformed to give the second-

layer outputs y
(2)
k ,

y
(2)
k (x) = fk

(

n1
∑

i=1

w
(2)
ki (y

(1)
i )2

)

, k = 1 . . . n2.

(3)

The nonlinearity fk is like in [2, Section 5.3] given by

fk(u) = fth(ln(u+ 1) + bk), (4)

where fth(u) = 0.25 ln(cosh(2u)) + 0.5u + 0.17 is

a smooth approximation of the thresholding function

max(0, u). The term bk sets the threshold. The param-

eters of the model are the first-layer feature detectors

w
(1)
i , the second-layer weights w

(2)
ki ≥ 0, the thresh-

olds bk, and the scalar c which is needed to allow for

proper normalization of the model.

The model in (1) is unnormalized. That is, it does

not integrate to one except for the right value of c which
we do, however, not know. This makes learning of the

parameters by standard maximum likelihood estimation

impossible. We use noise-contrastive estimation for the

learning [2].1

1As noise distribution, we use the uniform distribution in the 200

dimensional sphere. We took ten times more noise than data.

w
(1)
i

w
(2)
ki

(a) Subset of the features and their icons

(b) All features shown as icons

Figure 2: Learned features of the second layer.

We visualize our results in the same way as in [2].

The first-layer features w
(1)
i are visualized by show-

ing the image which yields the largest first-layer out-

put y
(1)
i . After learning, the second-layer weights w

(2)
ki

are extremely sparse: 94.5% have values less than 10−6

while 5.1% are larger than 10. We can thus visualize

each row of thew
(2)
ki by showing the feww

(1)
i for which

the weights are nonzero. This is done in Figure 2(a) for

five randomly selected rows. The same figure shows on

the right also a condensed visualization of the features

by means of icons that we have created as in [2, Figure

12]. In Figure 2(b), we use the icons to show all the

learned features of the first two layers.

The first layer is mostly sensitive to Gabor-like im-

age features, and the second layer pools dominantly

over similarly oriented or localized first-layer features.

These results are similar to those obtained for image

patches [2]. The pooling here is, however, less local-

ized. The first layer implements a selectivity stage, with

the Gabor-like image features being the preferred in-

put of each w
(1)
i . We show now that the second layer

weights w
(2)
ki can be interpreted to perform a max-like

computation over the first-layer feature outputs |y
(1)
i |.

Figure 3(a) shows a scatter plot between the outputs

y
(2)
k and the maximal value of |y

(1)
i |, taken over all i

for which w
(2)
ki is larger than 0.001. There is a clear cor-

relation, and a clear difference to the baseline in Fig-

ure 3(b). We thus may consider the learned weights

w
(2)
ki as indices that select over which first-layer outputs

to take the max operation. Hence, the first layer imple-



(a) With learning (b) Baseline

Figure 3: (a) For natural image input, we plot

the second-layer outputs y
(2)
k on the x-axis against

max
i:w

(2)
ki

>0.001
|y

(1)
i | on the y-axis. The correlation co-

efficient is 0.81. (b) Instead of using the learned w
(2)
ki ,

we took a random matrix with positive elements with

equal row sums as the learned matrix. This gives a cor-

relation coefficient of 0.18.

ments a feature selection stage while the second layer

corresponds to a feature invariance stage. Together with

Figure 2(b), the invariance takes often the form of toler-

ance with respect to exact localization and orientation.

3.2. Complete three-layer model

We extend here the model in (1) by looking for fea-

tures in the second layer outputs y
(2)
k . The features an-

alyze the relationships between the different y
(2)
k . Note

that in (1), only the average (DC component) of the

y
(2)
k enters into the computation of ln p. That is, the re-
lation between the different second-layer outputs does

not matter. Here, we modify the model so that de-

pendencies between the different second-layer outputs

enter into the model. For that purpose, we remove

the DC value 1/n2

∑

k y
(2)
k from the response vector

y
(2) = (y

(2)
1 , . . . y

(2)
n2 ), whiten it, and normalize its

norm. We denote the whitened normalized vector by

ỹ
(2). Figure 2 shows that some of the y

(2)
k are duplicates

of each other. Hence, with the whitening, we are also

performing dimension reduction from 50 to 46 dimen-

sions. Finding the right amount of dimension reduction

was straightforward since the eigenvalues of the covari-

ance matrix of y(2) (computed using natural image in-

put) dropped abruptly from a level of 10−3 to 10−7.

Keeping the computation in the first two layers, as

specified in (2) and (3), fixed, the three-layer model is

ln p(x) =

n3
∑

j=1

y
(3)
j + c, (5)

y
(3)
j = fth

(

w
(3)
j

T
ỹ
(2) + b

(3)
j

)

, (6)

where fth is the same smooth approximation of

max(0, u) as in (4). The parameters of the model are

the third-layer features w
(3)
j , the thresholds b

(3)
j , and

the scalar c. We learned the parameters of the model

when the number n3 of third-layer features was 10 and

100, using noise-contrastive estimation as in the previ-

ous section.

After learning, the thresholds b
(3)
j were all negative

(results not shown). The third layer implements thus

another selectivity layer since a third-layer output y
(3)
j

is only nonzero if the inner product w
(3)
j

T
ỹ
(2) is larger

than |b
(3)
j |.

In Figure 4(a) and (b), we show all the features for

n3 = 10 and a selection for n3 = 100, respectively.
Similarly to the visualization of the first-layer features,

we visualize the third-layer features by showing the

vector y(2) which yields the largest outputw
(3)
j

T
ỹ. Vi-

sualization of the optimal y(2) is not straightforward

though. We chose to make use of the icons in Fig-

ures 2. Each icon represents a second-layer feature, and

we weighted it proportionally to the k-th element of the

optimal y(2). In the colormap used, positively weighted

icons appear reddish while negatively weighted icons

appear in shades of blue. Green corresponds to a zero

weight. For clarity of visualization, we separately show

the weighted icons for the horizontally, vertically, and

diagonally oriented second-layer features.

Figure 4 shows that activity of horizontally tuned

second-layer features is often paired with inactivity of

vertically tuned ones, and vice versa; see for example

w
(3)
5 andw

(3)
8 . Such a property is known as orientation

inhibition. Some features also detect inactivity of co-

oriented neighbors of activated features, see for exam-

ple w
(3)
3 and w

(3)
10 . This behavior is known as sharpen-

ing of orientation tuning and end-stopping. The prop-

erties of some third-layer features might be related to

the fact that the tiny images are complete visual scenes

where center and surround have distinct characteristics.

For example, the third feature in (b) prefers activity on

the top, bottom, and right side but none in the middle,

while w
(3)
10 prefers to have no horizontal activity on the

sides.

In Figure 5, we show images which result in maxi-

mal and minimal values (activations) of selected y
(3)
j .2

There is a good correspondence to the visualization of

the features in Figure 4. Moreover, the images which

activate each feature most all belong to a well defined

category. More investigation is needed but this may

suggest that the feature outputs could act as descriptors

of the overall properties of the scene shown [6].

2The outputs were computed for 50000 tiny images.



DiagonalHorizontal Vertical DiagonalHorizontal Vertical

w
(3)
1

w
(3)
2

w
(3)
3

w
(3)
4

w
(3)
5

w
(3)
6

w
(3)
7

w
(3)
8

w
(3)
9

w
(3)
10

(a) Complete set of third-layer features w
(3)
j

for n3 = 10

DiagonalHorizontal Vertical

(b) Selection for n3 = 100

Figure 4: Visualization of the learned third-layer features. A feature is tuned to detect activity of the second-layer

features colored in red and inactivity of those colored in blue. See text body for further explanation on the visualization.

(a) Images forw
(3)
3 (b) Images forw

(3)
8 (c) Images forw

(3)
10

Figure 5: Images with maximal and minimal activation of the features. Top: max activation. Bottom: min activation.

4. Conclusions

In this paper, we have learned a selectivity–

invariance–selectivity architecture to extract features

from tiny images. In the first layer, Gabor-like struc-

tures are detected. The second layer learned to com-

pute a max-operation over the outputs of the first layer.

In this way, an invariance to exact orientation or lo-

calization of the stimulus was learned from the data.

The features on the third layer often detect activity of

aligned first-layer features in combination with inac-

tivity of their spatial neighbors, or inactivity of differ-

ently oriented features. Thus, the third layer learned

enhanced selectivity to orientation and/or space.

While some of the features on the third-layer can

be considered to reflect properties of complete visual

scenes, they do not correspond to parts of objects. In-

creasing the number of features might lead to the emer-

gence of such properties; increasing the number of lay-

ers might, however, also be necessary. We are hopeful

that the approach in this paper can be extended to learn

further selectivity and invariance layers.

References

[1] C. Cadieu and B. Olshausen. Learning Intermediate-

Level Representations of Form and Motion from Natural

Movies. Neural Computation, 24(4):827–866, 2012.

[2] M. U. Gutmann and A. Hyvärinen. Noise-contrastive es-

timation of unnormalized statistical models, with appli-

cations to natural image statistics. Journal of Machine

Learning Research, 13:307–361, 2012.

[3] A. Hyvärinen, J. Hurri, and P. Hoyer. Natural Image

Statistics. Springer, 2009.

[4] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun.

What is the Best Multi-Stage Architecture for Object

Recognition? In International Conference on Computer

Vision (ICCV), 2009.

[5] M. Kouh and T. Poggio. A Canonical Neural Circuit

for Cortical Nonlinear Operations. Neural Computation,

20(6):1427–1451, 2008.

[6] A. Oliva and A. Torralba. Modeling the Shape of

the Scene: A Holistic Representation of the Spatial

Envelope. International Journal of Computer Vision,

42(3):145–175, 2001.

[7] M. Riesenhuber and T. Poggio. Hierarchical models of

object recognition in cortex. Nature, 2(11):1019, 1999.

[8] N. C. Rust and A. A. Stocker. Ambiguity and invariance:

two fundamental challenges for visual processing. Cur-

rent Opinion in Neurobiology, 20(3):382–388, 2010.

[9] A. Torralba, R. Fergus, and W. T. Freeman. 80 million

tiny images: a large dataset for non-parametric object and

scene recognition. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 30(11):1958–1970, 2008.


