A Short Introduction to the Lasso Methodology

Michael Gutmann

sites.google.com/site/michaelgutmann

University of Helsinki Aalto University
Helsinki Institute for Information Technology

March 9, 2016
Lasso ≡ Least Absolute Shrinkage and Selection Operator

Goal: After the lecture, to understand what these words mean

▶ Shrinkage: The lasso shrinks / regularizes the least squares regression coefficients (like ridge regression).
▶ Selection: The lasso also performs variable selection (unlike ridge regression).
▶ Least absolute: Shrinkage and selection are achieved by penalizing the absolute values of the regression coefficients.
Linear regression

- Data: \(\{(x_1, y_1), \ldots, (x_n, y_n)\} \)
 - \(n \) observations of pairs \((x_i, y_i)\)
 - \(x_i \in \mathbb{R}^p \): covariates
 - \(y_i \in \mathbb{R} \): response

- Assumption: linear relation between covariates and response

\[
y_i = x_{i1}\beta_1 + \ldots + x_{ip}\beta_p + e_i \quad (1)
\]
\[
= x_i^\top \beta + e_i \quad (2)
\]

where \(e_i \) is the residual

- Goal: Determine the coefficients \(\beta = (\beta_1, \ldots, \beta_p)^\top \)
Least squares

- Minimize the residual sum of squares (RSS)

\[
\text{RSS}(\beta) = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} \left(y_i - x_i^\top \beta \right)^2
\]

(3)

- In vector notation, with

\[
y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \quad x = \begin{pmatrix} x_1^\top \\ \vdots \\ x_n^\top \end{pmatrix} = \begin{pmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{pmatrix}
\]

(4)

we have

\[
\text{RSS}(\beta) = \|y - X\beta\|_2^2
\]

(5)
Least squares

- Closed form solution

\[
\hat{\beta}^o = \arg\min_{\beta} \text{RSS}(\beta) = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}
\]

if \(p \times p \) matrix \(\mathbf{X}^\top \mathbf{X} \) is invertible

- Prediction given a test covariate vector \(\mathbf{x} \)

\[
\hat{y} = \mathbf{x}^\top \hat{\beta}^o
\]
Ridge regression

- If $X^\top X$ is not invertible, regularized inverse can be taken
 \[
 \hat{\beta}^r = (X^\top X + \lambda I_p)^{-1}X^\top y
 \]
 (9)

 where I_p is the $p \times p$ identity matrix and $\lambda \geq 0$ the regularization parameter.

- This is ridge regression, $\hat{\beta}^r$ is minimizing $J^r(\beta)$
 \[
 J^r(\beta) = ||y - X\beta||_2^2 + \lambda \sum_{j=1}^p \beta_j^2
 \]
 (10)

- As λ increases, $\hat{\beta}^r$ shrinks to zero ("shrinkage").
Benefits of ridge regression

\[\hat{\beta}^r = (X^\top X + \lambda I_p)^{-1} X^\top y \]

- Regularization / shrinkage is useful even if \(X^\top X \) is invertible.
- Reason: it can improve prediction accuracy

Example:
- \(n = 50 \) observations,
- \(p = 10 \) covariates
- Orthonormal matrix \(X \):
 \[X^\top X = I_p \]
- \(\hat{\beta}^r = \frac{1}{1+\lambda} X^\top y = \frac{1}{1+\lambda} \hat{\beta}^o \)
Limits of ridge regression

- Data were artificially generated with $\beta^* = (3, 2, 1, 0, \ldots, 0)^\top$
- The vector is sparse: only 3/10 nonzero terms
- Ridge regression cannot recover sparse β.

- Ridge regression performs shrinkage but not variable selection.

- Variable selection: Some $\hat{\beta}_j$ are set to zero; covariates are omitted from the fitted model.
Some practical aspects

- Choice of λ: via cross-validation
- Ridge solution $\hat{\beta}^r$ depends on the scale of the covariates.
 - Center so that $\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} x_{ij} = 0$
 - Re-scale so that $\sum_{i=1}^{n} x_{ij}^2 = 1$
- Assume that the data were preprocessed in this manner.
Importance of variable selection

- It reduces the complexity of the models.
- The models become easier to interpret.
- It makes prediction cheaper: only covariates with nonzero $\hat{\beta}_j$ need to be measured.

\[
\hat{y} = x_1\hat{\beta}_1 + \ldots + x_{1000}\hat{\beta}_{1000}
\]

\[
\downarrow
\]

\[
\hat{y} = x_1\hat{\beta}_1 + x_2\hat{\beta}_2 + x_3\hat{\beta}_3
\]
Lasso regression

Lasso regression consists in minimizing $J^L(\beta)$,

$$J^L(\beta) = ||y - X\beta||_2^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$ (11)

Similar to the cost function $J^r(\beta)$ for ridge regression,

$$J^r(\beta) = ||y - X\beta||_2^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$ (12)

$\lambda \geq 0$ is the regularization (shrinkage) parameter.

Penalty: sum of *absolute* values instead of sum of squares

Difference seems minor but it results in a very different behavior: it enables *shrinkage* and *selection* of covariates.
The lasso generally lacks an analytical solution. Closed form solution when $\mathbf{X}^\top \mathbf{X} = \mathbf{I}_p$

$$
\hat{\beta}_j^L = \begin{cases}
\hat{\beta}^o - \frac{\lambda}{2} & \text{if } \hat{\beta}^o \geq \frac{\lambda}{2} \\
0 & \text{if } \hat{\beta}^o \in \left(-\frac{\lambda}{2}, \frac{\lambda}{2}\right) \\
\hat{\beta}^o + \frac{\lambda}{2} & \text{if } \hat{\beta}^o \leq -\frac{\lambda}{2}
\end{cases}
$$ (13)
Data were artificially generated with $\beta^* = (3, 2, 1, 0, \ldots, 0)^\top$

The vector is sparse: only 3/10 nonzero terms

Lasso regression combines shrinkage and variable selection.
Proof

- Assume $\mathbf{X}^\top \mathbf{X} = \mathbf{I}_p$
- We want to show that the shrinkage and selection operator

$$
\hat{\beta}_j^L = \begin{cases}
\hat{\beta}^o - \frac{\lambda}{2} & \text{if } \hat{\beta}^o \geq \frac{\lambda}{2} \\
0 & \text{if } \hat{\beta}^o \in \left(-\frac{\lambda}{2}, \frac{\lambda}{2}\right) \\
\hat{\beta}^o + \frac{\lambda}{2} & \text{if } \hat{\beta}^o \leq -\frac{\lambda}{2}
\end{cases}
$$

(14)

minimizes $J^L(\beta)$,

$$
J^L(\beta) = ||\mathbf{y} - \mathbf{X}\beta||_2^2 + \lambda \sum_{j=1}^{p} |\beta_j|
$$

(15)
Proof

$$J^L(\beta) = \|y - X\beta\|_2^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$ \hspace{1cm} (16)

$$= (y - X\beta)^T (y - X\beta) + \lambda \sum_{j=1}^{p} |\beta_j|$$ \hspace{1cm} (17)

$$= y^T y - y^T X\beta - \beta^T X^T y + \beta^T X^T X\beta + \lambda \sum_{j=1}^{p} |\beta_j|$$ \hspace{1cm} (18)

$$= y^T y - 2\beta^T X^T y + \beta^T X^T X\beta + \lambda \sum_{j=1}^{p} |\beta_j|$$ \hspace{1cm} (19)

$$= y^T y - 2\beta^T \underbrace{X^T y}_{\hat{\beta}^o = r} + \beta^T \beta + \lambda \sum_{j=1}^{p} |\beta_j|$$ \hspace{1cm} (20)
Proof

\[J^L(\beta) = y^T y - 2\beta^T r + \beta^T \beta + \lambda \sum_{j=1}^{p} |\beta_j| \]
(21)

\[= y^T y - 2 \sum_{j=1}^{p} \beta_j r_j + \sum_{j=1}^{p} \beta_j^2 + \lambda \sum_{j=1}^{p} |\beta_j| \]
(22)

\[= y^T y + \sum_{j=1}^{p} \left(-2\beta_j r_j + \beta_j^2 + \lambda |\beta_j| \right) \]
(23)

\[= \text{constant} + \sum_{j=1}^{p} f_j(\beta_j) \]
(24)

- For \(X^T X = I_p \), the optimization problem decomposes into \(p \) independent problems.
- Minimizing each \(f_j(\beta_j) \) separately will minimize \(J^L(\beta) \).
Drop the subscripts for a moment and consider a single f only.

$$f(\beta) = \beta^2 - 2r\beta + \lambda|\beta|$$ \hspace{1cm} (25)

Problem: derivative at zero not defined
Proof

- Approach: Make a smooth approximation $|\beta| \approx h_\epsilon(\beta)$

\[
h_\epsilon(\beta) = \begin{cases} \\
\frac{\epsilon}{2} + \frac{1}{2\epsilon} \beta^2 & \text{if } \beta \in (-\epsilon, \epsilon) \\
|\beta| & \text{otherwise}
\end{cases}
\]

(26)

- Do all the work with $\epsilon > 0$ and, at the end, take the limit $\epsilon \to 0$.

- Graph showing absolute value and approximation of $h_\epsilon(\beta)$.
Proof

- Using $h_\epsilon(\beta)$ instead of $|\beta|$ gives

\[
\tilde{f}(\beta) = \beta^2 - 2r\beta + \lambda h_\epsilon(\beta)
\] (27)

- The derivative of $\tilde{f}(\beta)$ is

\[
\tilde{f}'(\beta) = 2\beta - 2r + \lambda h'_\epsilon(\beta)
\] (28)

\[
h'_\epsilon(\beta) = \begin{cases}
1 & \text{if } \beta \geq \epsilon \\
\frac{\beta}{\epsilon} & \text{if } \beta \in (-\epsilon, \epsilon) \\
-1 & \text{if } \beta \leq -\epsilon
\end{cases}
\]
Proof

- Setting the derivative of $\tilde{f}'(\beta)$ to zero gives the condition

$$2\beta - 2r + \lambda h'_\epsilon(\beta) = 0 \quad (29)$$

$$\beta + \frac{\lambda}{2} h'_\epsilon(\beta) = r \quad (30)$$

- The left-hand side is a piecewise linear, monotonically increasing function $g_\epsilon(\beta)$: β is uniquely determined by r.

\[
g_\epsilon(\beta) = \begin{cases}
\beta + \frac{\lambda}{2} & \text{if } \beta \geq \epsilon \\
\beta(1 + \frac{\lambda}{2\epsilon}) & \text{if } \beta \in (-\epsilon, \epsilon) \\
\beta - \frac{\lambda}{2} & \text{if } \beta \leq -\epsilon
\end{cases}
\]
Proof

There are three cases

1. \(r \geq \epsilon + \frac{\lambda}{2} \)
 \[
 \beta + \frac{\lambda}{2} = r \implies \beta = r - \frac{\lambda}{2}
 \]

2. \(r \in \left(-\epsilon - \frac{\lambda}{2}, \epsilon + \frac{\lambda}{2} \right) \)
 \[
 \beta \frac{2\epsilon + \lambda}{2\epsilon} = r \implies \beta = \frac{2\epsilon r}{2\epsilon + \lambda}
 \]

3. \(r \leq -\epsilon - \frac{\lambda}{2} \)
 \[
 \beta - \frac{\lambda}{2} = r \implies \beta = r + \frac{\lambda}{2}
 \]
Proof

There are three cases

1. \(r \geq \epsilon + \frac{\lambda}{2} \)

 \[\beta + \frac{\lambda}{2} = r \Rightarrow \beta = r - \frac{\lambda}{2} \]

2. \(r \in (-\epsilon - \frac{\lambda}{2}, \epsilon + \frac{\lambda}{2}) \)

 \[\beta = \frac{2\epsilon + \lambda}{2\epsilon} \Rightarrow \beta = \frac{2\epsilon r}{2\epsilon + \lambda} \]

3. \(r \leq -\epsilon - \frac{\lambda}{2} \)

 \[\beta - \frac{\lambda}{2} = r \Rightarrow \beta = r + \frac{\lambda}{2} \]

Hence

\[\beta = \begin{cases}
 r - \frac{\lambda}{2} & \text{if } r \geq \epsilon + \frac{\lambda}{2} \\
 \frac{2\epsilon}{2\epsilon + \lambda} r & \text{if } r \in (-\epsilon - \frac{\lambda}{2}, \epsilon + \frac{\lambda}{2}) \\
 r + \frac{\lambda}{2} & \text{if } r \leq -\epsilon - \frac{\lambda}{2}
\end{cases} \]
Proof

- Taking the limit $\epsilon \to 0$ gives

$$ \hat{\beta} = \begin{cases}
 r - \frac{\lambda}{2} & \text{if } r \geq \frac{\lambda}{2} \\
 0 & \text{if } r \in (-\frac{\lambda}{2}, \frac{\lambda}{2}) \\
 r + \frac{\lambda}{2} & \text{if } r \leq -\frac{\lambda}{2}
\end{cases} \quad (31) $$

- With the subscripts, and $r_j = \hat{\beta}_j^o$, we have

$$ \hat{\beta}_j = \begin{cases} \hat{\beta}_j^o - \frac{\lambda}{2} & \text{if } \hat{\beta}_j^o \geq \frac{\lambda}{2} \\
 0 & \text{if } \hat{\beta}_j^o \in (-\frac{\lambda}{2}, \frac{\lambda}{2}) \\
 \hat{\beta}_j^o + \frac{\lambda}{2} & \text{if } \hat{\beta}_j^o \leq -\frac{\lambda}{2} \end{cases} \quad (32) $$

which is the lasso solution $\hat{\beta}_j^L$.

Michael Gutmann
Short Introduction to the Lasso
23 / 24
Summary

Lasso ≡ *Least Absolute Shrinkage and Selection Operator*

- Method to regularize linear regression (like ridge regression)
- Regularization / *shrinkage* can improve prediction accuracy.
- Method to perform covariate *selection* (unlike ridge regression)
- Covariate selection reduces the complexity of fitted models; makes them easier to interpret.
- Combination of shrinkage and selection is achieved by penalizing the *absolute* values of the regression coefficients.
Appendix
Constrained optimization point of view

Ridge regression:

$$\min_{\beta} \|y - X\beta\|_2^2$$

subject to $\sum_{j=1}^{p} \beta_j^2 \leq t$

Lasso regression:

$$\min_{\beta} \|y - X\beta\|_2^2$$

subject to $\sum_{j=1}^{p} |\beta_j| \leq t$

(Based on figures from chapter 6 of Introduction to Statistical Learning)

Michael Gutmann | Short Introduction to the Lasso