Bayesian Inference for Intractable Infectious Disease Models

Michael Gutmann

http://homepages.inf.ed.ac.uk/mgutmann

Institute for Adaptive and Neural Computation
School of Informatics, University of Edinburgh

29 November 2017
Learning from data

- Goal: Using observed data x^o, learn about their source
- Enables decision making, predictions, ...
General approach

- Set up a model with potential properties θ (parameters)
- See which θ are in line with the observed data x^o
General approach

- Set up a model with potential properties θ (parameters)
- See which θ are in line with the observed data x^o
Example: Bacterial infections in child care centres

- Data: Colonization states of sampled attendees in 29 child day care centres (DCCs).
- Each square indicates a child colonized with a strain of the bacterium *Streptococcus pneumoniae*.
Example: Bacterial infections in child care centres

- Model: latent continuous-time Markov chain for the transmission dynamics in a DCC and an observation model
- What can we say about the parameters of interest?

Parameters of interest:
- rate of infections within a center
- rate of infections from outside
- competition between the strains

(Numminen et al, 2013)
The likelihood function

- Measures agreement between θ and the observed data x^o
- Probability to generate data like x^o if hypothesis θ holds
For the child care centre model and other (individual-based) models: likelihood function is too expensive to compute.

General computer science/statistics research question:
How to efficiently perform (Bayesian) inference when
 the likelihood function cannot be evaluated
 but sampling from the model is possible
For the child care centre model and other (individual-based) models: likelihood function is too expensive to compute.

General computer science/statistics research question:

How to efficiently perform (Bayesian) inference when

- the likelihood function cannot be evaluated
- but sampling from the model is possible

Research area called “likelihood-free inference” or “approximate Bayesian computation”

(recent review article: Lintusaari et al, Systematic Biology, 2017)
Simple approach: approximate by counting

Likelihood: Probability to generate data like x^o for parameter value θ
Example: Bacterial infections in child care centers

- Data: *Streptococcus pneumoniae* colonization for 29 centers
- Inference with a smarter version of the counting-based approach (population Monte Carlo ABC)
- Reveals strong competition between different bacterial strains

Expensive:
- 4.5 days on a cluster with 200 cores
- More than one million simulated data sets
We developed a fast inference algorithm using machine learning (Bayesian optimisation).

Roughly equal results using 1000 times fewer simulations.

4.5 days with 200 cores
\[\downarrow\]
90 minutes with seven cores

Posterior means: solid lines,
credibility intervals: shaded areas or dashed lines.

(Gutmann and Corander, JMLR, 2016)
Standard approach: approximate by counting

Likelihood: Probability to generate data like x^o for parameter value θ

Model $M(\theta)$

Likelihood $L(\theta) \approx \text{proportion of green outcomes}$

Data space
Robust Bayesian inference using machine learning

- Traditionally, expert knowledge is used to judge whether the simulated and observed data are close
- But experts make mistakes too
Conclusions

- Inference for models where the likelihood is intractable but sampling is possible (likelihood-free inference)
- Relevant for complex infectious disease models with many unobserved variables
- Machine learning to accelerate and robustify the inference

Further information:
- Review paper: Lintusaari et al, Systematic Biology, 2017
Conclusions

- Inference for models where the likelihood is intractable but sampling is possible (likelihood-free inference)
- Relevant for complex infectious disease models with many unobserved variables
- Machine learning to accelerate and robustify the inference

Further information:

- My homepage: http://homepages.inf.ed.ac.uk/mgutmann
- Review paper: Lintusaari et al, Systematic Biology, 2017
- Software: ELFI – Engine for Likelihood-Free Inference
 http://elfi.readthedocs.io