Publications


Manuscripts

  • Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families V. Simkus, and M. Gutmann arXiv:2403.03069 2024

Refereed papers

  • Designing optimal behavioral experiments using machine learning S. Valentin, S. Kleinegesse, N. Bramley, P. Seriès, M. Gutmann, and C. Lucas eLife 2024
  • An Extendable Python Implementation of Robust Optimisation Monte Carlo V. Gkolemis, M. Gutmann, and H. Pesonen Journal of Statistical Software 2023
  • Bayesian Optimization with Informative Covariance A. Eduardo, and M. Gutmann Transactions on Machine Learning Research 2023
  • Estimating the Density Ratio between Distributions with High Discrepancy using Multinomial Logistic Regression A. Srivastava, S. Han, K. Xu, B. Rhodes, and M. Gutmann Transactions on Machine Learning Research 2023
  • Variational Gibbs Inference for Statistical Model Estimation from Incomplete Data V. Simkus, B. Rhodes, and M. Gutmann Journal of Machine Learning Research 2023
  • Is Learning Summary Statistics Necessary for Likelihood-free Inference? Y. Chen, M. Gutmann, and A. Weller Proceedings of the 40th International Conference on Machine Learning (ICML) 2023
  • Conditional Sampling of Variational Autoencoders via Iterated Approximate Ancestral Sampling V. Simkus, and M. Gutmann Transactions on Machine Learning Research 2023
  • Systematic comparison of ranking aggregation methods for gene lists in experimental results B. Wang, A. Law, T. Regan, N. Parkinson, J. Cole, C. Russell, D. Dockrell, M. Gutmann, and J. Baillie Bioinformatics 2022
  • Statistical applications of contrastive learning M. Gutmann, S. Kleinegesse, and B. Rhodes Behaviormetrika 2022
  • Inference and uncertainty quantification of stochastic gene expression via synthetic models K. Öcal, M. Gutmann, G. Sanguinetti, and R. Grima Journal of The Royal Society Interface 2022
  • Enhanced gradient-based MCMC in discrete spaces B. Rhodes, and M. Gutmann Transactions on Machine Learning Research 2022
  • Parallel Gaussian process surrogate Bayesian inference with noisy likelihood evaluations M. Järvenpää, M. Gutmann, A. Vehtari, and P. Marttinen Bayesian Analysis 2021
  • Adaptive Approximate Bayesian Computation Tolerance Selection U. Simola, J. Cisewski-Kehe, M. Gutmann, and J. Corander Bayesian Analysis 2021
  • Sequential Bayesian Experimental Design for Implicit Models via Mutual Information S. Kleinegesse, C. Drovandi, and M. Gutmann Bayesian Analysis 2021
  • Neural Approximate Sufficient Statistics for Implicit Models Y. Chen, D. Zhang, M. Gutmann, A. Courville, and Z. Zhu In International Conference on Learning Representations (ICLR) 2021
  • Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods D. Ivanova, A. Foster, S. Kleinegesse, M. Gutmann, and T. Rainforth In Proceedings of the Thirty-fifth Conference on Neural Information Processing Systems (NeuRIPS 2021) 2021
  • Bayesian Optimal Experimental Design for Simulator Models of Cognition S. Valentin, S. Kleinegesse, N. Bramley, M. Gutmann, and C. Lucas In NeurIPS 2021 Workshop "AI for Science" 2021
  • Stir to Pour: Efficient Calibration of Liquid Properties for Pouring Actions T. Lopez Guevara, R. Pucci, N. Taylor, M. Gutmann, R. Ramamoorthy, and K. Subr In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2020) 2020
  • Genome-wide CRISPR screen Identifies Host Dependency Factors for Influenza A Virus Infection B. Li, S. Clohisey, B. Chia, B. Wang, A. Cui, T. Eisenhaure, L. Schweitzer, P. Hoover, N. Parkinson, A. Nachshon, N. Smith, T. Regan, D. Farr, M. Gutmann, S. Bukhari, A. Law, M. Sangesland, I. Gat-viks, P. Digard, S. Vasudevan, D. Lingwood, D. Dockrell, J. Doench, J. Baillie, and N. Hacohen Nature Communications 2020
  • Generative Ratio Matching Networks A. Srivastava, K. Xu, M. Gutmann, and C. Sutton In Proceedings of the International Conference on Learning Representations (ICLR) 2020
  • Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation S. Kleinegesse, and M. Gutmann In Proceedings of the 37th International Conference on Machine Learning (ICML) 2020
  • Molecular Patterns in Acute Pancreatitis Reflect Generalizable Endotypes of the Host Response to Systemic Injury in Humans L. Neyton, X. Zheng, C. Skouras, A. Doeschl-Wilson, M. Gutmann, I. Uings, F. Rao, A. Nicolas, C. Marshall, L. Wilson, J. Baillie, and D. Mole Annals of Surgery 2020
  • Robust Optimisation Monte Carlo B. Ikonomov, and M. Gutmann In Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics (AISTATS) 2020
  • Likelihood-Free Inference by Ratio Estimation O. Thomas, R. Dutta, J. Corander, S. Kaski, and M. Gutmann Bayesian Analysis 2020
  • Telescoping Density-Ratio Estimation B. Rhodes, K. Xu, and M. Gutmann In Advances in Neural Information Processing Systems 34 (NeurIPS 2020) 2020
  • Adaptive Gaussian Copula ABC Y. Chen, and M. Gutmann In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 2019
  • Efficient acquisition rules for model-based approximate Bayesian computation M. Järvenpää, M. Gutmann, A. Vehtari, and P. Marttinen Bayesian Analysis 2019
  • Resolving outbreak dynamics using approximate Bayesian computation for stochastic birth-death models J. Lintusaari, P. Blomstedt, B. Rose, T. Sivula, M. Gutmann, S. Kaski, and J. Corander Wellcome Open Research 2019
  • Variational Noise-Contrastive Estimation B. Rhodes, and M. Gutmann In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 2019
  • Bayesian inference of atomistic structure in functional materials M. Todorović, M. Gutmann, J. Corander, and P. Rinke npj Computational Materials 2019
  • Efficient Bayesian Experimental Design for Implicit Models S. Kleinegesse, and M. Gutmann In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 2019
  • Weak Epistasis May Drive Adaptation in Recombining Bacteria B. Arnold, M. Gutmann, Y. Grad, S. Sheppard, J. Corander, M. Lipsitch, and W. Hanage Genetics 2018
  • Conditional Noise-Contrastive Estimation of Unnormalised Models C. Ceylan, and M. Gutmann In Proceedings of the 35th International Conference on Machine Learning (ICML) 2018
  • Likelihood-free inference via classification M. Gutmann, R. Dutta, S. Kaski, and J. Corander Statistics and Computing 2018
  • Gaussian process modeling in approximate Bayesian computation to estimate horizontal gene transfer in bacteria M. Järvenpää, M. Gutmann, A. Vehtari, and P. Marttinen The Annals of Applied Statistics 2018
  • ELFI: Engine for Likelihood-Free Inference J. Lintusaari, H. Vuollekoski, A. Kangasrääsiö, K. Skytén, M. Järvenpää, P. Marttinen, M. Gutmann, A. Vehtari, and J. Corander Journal of Machine Learning Research 2018
  • Adaptable Pouring: Teaching Robots Not to Spill using Fast but Approximate Fluid Simulation T. Lopez-Guevara, N. Taylor, M. Gutmann, S. Ramamoorthy, and K. Subr In Proceedings of the 1st Annual Conference on Robot Learning (CoRL) 2017
  • Fundamentals and Recent Developments in Approximate Bayesian Computation J. Lintusaari, M. Gutmann, R. Dutta, S. Kaski, and J. Corander Systematic Biology 2017
  • Frequency-dependent selection in vaccine-associated pneumococcal population dynamics J. Corander, C. Fraser, M. Gutmann, B. Arnold, W. Hanage, S. Bentley, M. Lipsitch, and N. Croucher Nature Ecology & Evolution 2017
  • Simultaneous Estimation of Non-Gaussian Components and their Correlation Structure H. Sasaki, M. Gutmann, H. Shouno, and A. Hyvärinen Neural Computation 2017
  • VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning A. Srivastava, A. Valkov, C. Russell, M. Gutmann, and C. Sutton In Advances in Neural Information Processing Systems 30 (NIPS 2017) 2017
  • Bayesian inference of physiologically meaningful parameters from body sway measurements A. Tietäväinen, M. Gutmann, E. Keski-Vakkuri, J. Corander, and E. Haeggström Scientific Reports 2017
  • Bayesian optimization for likelihood-free inference of simulator-based statistical models M. Gutmann, and J. Corander Journal of Machine Learning Research 2016
  • On the identifiability of transmission dynamic models for infectious diseases J. Lintusaari, M. Gutmann, S. Kaski, and J. Corander Genetics 2016
  • The impact of host metapopulation structure on the population genetics of colonizing bacteria E. Numminen, M. Gutmann, M. Shubin, P. Marttinen, G. Méric, W. Schaik, T. Coque, F. Baquero, R. Willems, S. Sheppard, E. Feil, W. Hanage, and J. Corander Journal of Theoretical Biology 2016
  • Recombination produces coherent bacterial species clusters in both core and accessory genomes P. Marttinen, N. Croucher, M. Gutmann, J. Corander, and W. Hanage Microbial Genomics 2015
  • Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images M. Gutmann, V. Laparra, A. Hyvärinen, and J. Malo PLOS ONE 2014
  • Direct learning of sparse changes in Markov networks by density ratio estimation S. Liu, J. Quinn, M. Gutmann, T. Suzuki, and M. Sugiyama Neural Computation 2014
  • Estimating dependency structures for non-Gaussian components with linear and energy correlations H. Sasaki, M. Gutmann, H. Shouno, and A. Hyvärinen In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 2014
  • A three-layer model of natural image statistics M. Gutmann, and A. Hyvärinen Journal of Physiology-Paris 2013
  • Estimation of unnormalized statistical models without numerical integration M. Gutmann, and A. Hyvärinen In Proceedings of the Workshop on Information Theoretic Methods in Science and Engineering 2013
  • Direct learning of sparse changes in Markov networks by density ratio estimation S. Liu, J. Quinn, M. Gutmann, and M. Sugiyama In Machine Learning and Knowledge Discovery in Databases (ECML PKDD) 2013
  • Correlated topographic analysis: estimating an ordering of correlated components H. Sasaki, M. Gutmann, H. Shouno, and A. Hyvärinen Machine Learning 2013
  • Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics M. Gutmann, and A. Hyvärinen Journal of Machine Learning Research 2012
  • Learning a selectivity–invariance–selectivity feature extraction architecture for images M. Gutmann, and A. Hyvärinen In Proceedings of the International Conference on Pattern Recognition (ICPR) 2012
  • Topographic analysis of correlated components H. Sasaki, M. Gutmann, H. Shouno, and A. Hyvärinen In JMLR: Workshop and Conference Proceedings 2012
  • Bregman divergence as general framework to estimate unnormalized statistical models M. Gutmann, and J. Hirayama In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI) 2011
  • Extracting coactivated features from multiple data sets M. Gutmann, and A. Hyvärinen In Proceedings of the International Conference on Artificial Neural Networks (ICANN) 2011
  • Complex-valued independent component analysis of natural images V. Laparra, M. Gutmann, J. Malo, and A. Hyvärinen In Proceedings of the International Conference on Artificial Neural Networks (ICANN) 2011
  • Noise-contrastive estimation: A new estimation principle for unnormalized statistical models M. Gutmann, and A. Hyvärinen In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 2010
  • A family of computationally efficient and simple estimators for unnormalized statistical models M. Pihlaja, M. Gutmann, and A. Hyvärinen In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI) 2010
  • Learning features by contrasting natural images with noise M. Gutmann, and A. Hyvärinen In Proceedings of the International Conference on Artificial Neural Networks (ICANN) 2009
  • Learning reconstruction and prediction of natural stimuli by a population of spiking neurons M. Gutmann, and A. Hyvärinen In European Symposium on Artificial Neural Networks (ESANN) 2009
  • Learning natural image structure with a horizonal product model U. Köster, J. Lindgren, M. Gutmann, and A. Hyvärinen In Proceedings on the International Conference on Independent Component Analysis and Signal Separation 2009
  • Toward data representation with spiking neurons M. Gutmann, and K. Aihara Artificial Life and Robotics 2008
  • Learning encoding and decoding filters for data representation with a spiking neuron M. Gutmann, A. Hyvärinen, and K. Aihara In Proceedings of the International Joint Conference on Neural Networks (IJCNN) 2008
  • Statistical model of natural stimuli predicts edge-like pooling of spatial frequency channels in V2 A. Hyvärinen, M. Gutmann, and P. Hoyer BMC Neuroscience 2005
  • Statistical models of images and early vision A. Hyvärinen, P. Hoyer, J. Hurri, and M. Gutmann In Proceedings of the International and Interdisciplinary Conference on Adaptive Knowledge Representation and Reasoning (AKRR) 2005

Teaching materials

  • Pen and Paper Exercises in Machine Learning M. Gutmann University of Edinburgh 2022

Workshop and other papers

  • Bayesian Optimal Experimental Design for Simulator Models of Cognition S. Valentin, S. Kleinegesse, N. Bramley, M. Gutmann, and C. Lucas In NeurIPS 2021 Workshop "AI for Science" 2021
  • Gradient-based Bayesian Experimental Design for Implicit Models using Mutual Information Lower Bounds S. Kleinegesse, and M. Gutmann arXiv:2105.04379 2021
  • To Stir or Not to Stir: Online Estimation of Liquid Properties for Pouring Actions T. Lopez Guevara, R. Pucci, N. Taylor, M. Gutmann, S. Ramamoorthy, and K. Subr In Workshop on Learning and Inference in Robotics: Integrating Structure, Priors and Models 2018
  • Dynamic Likelihood-free Inference via Ratio Estimation (DIRE) T. Dinev, and M. Gutmann arXiv:1810.09899 2018
  • Classification and Bayesian Optimization for Likelihood-Free Inference M. Gutmann, J. Corander, R. Dutta, and S. Kaski arXiv:1502.05503 2015
  • Learning topographic representations for linearly correlated components H. Sasaki, M. Gutmann, H. Shouno, and A. Hyvärinen In Workshop on Deep Learning and Unsupervised Feature Learning, NIPS 2011
  • Learning spike-timings based representations of sensory stimuli with leaky integrate-and-fire neurons M. Gutmann, and A. Hyvärinen BMC Neuroscience 2009
  • Unsupervised learning by discriminating data from artificial noise M. Gutmann, and A. Hyvärinen In NIPS Workshop on Generative Discriminative Learning Interface 2009